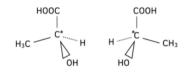
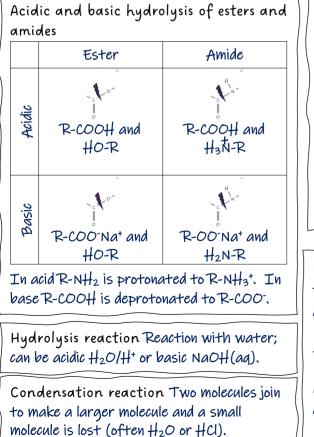
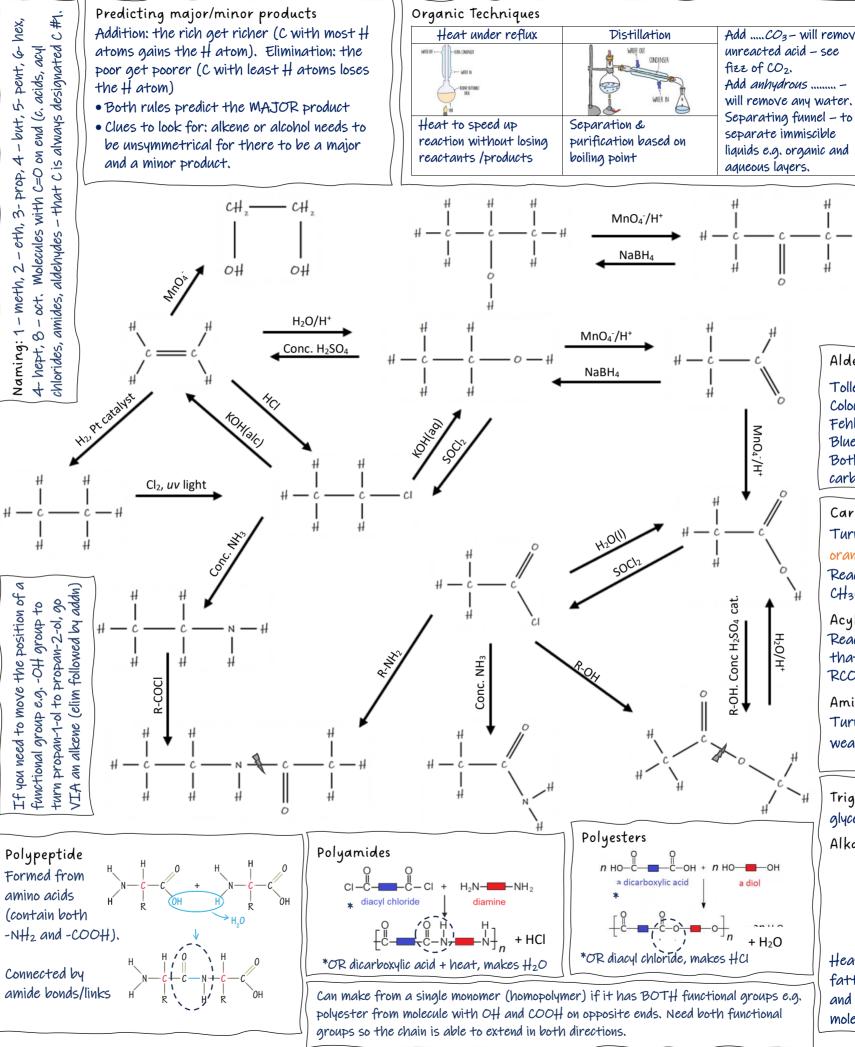


structural/constitutional Same number AND type of atoms but different connectivity e.g. butane and methyl propane (C_4H_{10}) , and propan-2-ol and propan-1-ol (C3H7OH)

Stereoisomers


cis


Same number AND type of atoms AND same connectivity but different arrangement in space.


• Geometrical cis / trans. Need to have a C=C (allows no free rotation) as well as each C of the C=C must be bonded to 2 different atoms/groups e.g.

 Optical / enantiomers, Have chiral / asymmetric C atom / C bonded to 4 different atoms/groups. Enantiomers are non-superimposable mirror images. Same mpt, bpt and solubility. Can be distinguished by the fact they rotate plane-polarised light in opposite directions.

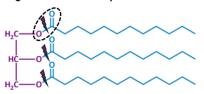
	Classification: primary, secondary, tertiary	
ve	Alcohols / haloalkanes: count the # of carbon	
	atoms attached to the carbon atom attached to the $-OH/-X$	
r.	Amines: classified as primary (1°), secondary	
0	(2°) , or tertiary (3°) , depending on how many	
	carbon groups are connected to the nitrogen	
	atom 1°RNH ₂ 2°R ₂ NH 3°R ₃ N	
	Alcohols R-OH C1-4/5 are soluble in water.	
- ++	Oxidation:	
	Use MnO_4 -/H ⁺ (purple to colourless Mn^{2+}) or	
	$Cr_2O_7^{2-}/H^+$ (orange to green Cr^{3+})	
	$1^{\circ} \rightarrow$ aldehydes \rightarrow carboxylic acids	
	$2^{\circ} \rightarrow$ ketones (and then NOT further oxidised)	
	3° (NOT oxidised by these).	
lehy	lehydes and ketones aldehydes 🗹 ketones 🗷	

Tollen's solution / silver nitrate test Colourless solution forms a silver mirror as $Aq^+ + e^- \rightarrow Aq$. Fehling's and Benedict's solution Blue solution forms brick red ppt of Cu_2O $Cu^{2+} + e \rightarrow Cu^{+}$ Both are mild oxidising agents and oxidise the aldehyde \rightarrow carboxylic acid

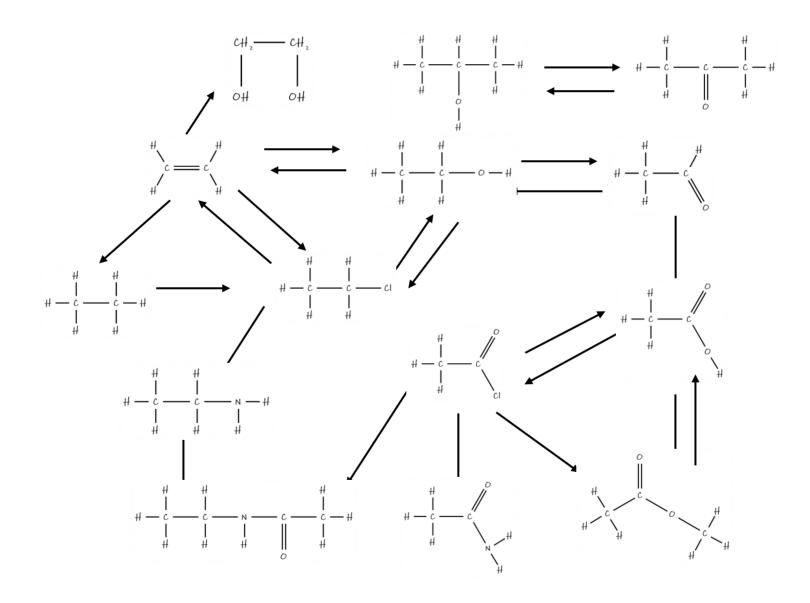
Carboxylic acids

Turns damp litmus paper blue \rightarrow red and UI paper green \rightarrow orange as weak acids; $RCOOH + H_2O \Rightarrow RCOO^- + H_3O^+$ React with carbonate/bicarbonate soln, see bubbles of gas $CH_3COOH + NaHCO_3 \rightarrow CH_3COONa + H_2O + CO_2$

Acyl chlorides


Reacts violently with water to give grey fumes of HCI(g) that turn damp blue litmus paper \rightarrow red $RCOCI + H_2O \rightarrow RCOOH + HCI$

Amines


Turn damp litmus paper from red \rightarrow blue as amines are weak bases $RNH_2 + H_2O \Rightarrow RNH_3^+ + OH^-$

Triglycerides: Are triesters made from fatty acids and a alycerol (propane-1,2,3-triol) backbone. Ester is circled.

Alkaline hydrolysis forms soaps

Heat with NaOH(ag) or KOH(ag). Ester bonds between the fatty acids and glycerol break to give propane-1,2,3-triol and the sodium salts of the fatty acids which are SOAP molecules e.g. C11H23COO- Nat.

